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Abstract— FM-Index and Suffix Array are closely related to 
each other and are both extremely popular indexes for genomic 
sequences. They are used in several popular read alignment tools, 
including Bowtie, Bowtie 2, BWA, and GEM. In literature, there 
exist several Suffix Array Construction Algorithms (SACA). We 
have considered two popular SACA techniques: DivSufSort and 
SAIS. Both techniques construct suffix array in linear time. We 
have constructed FM-Index using both of these SACA 
algorithms. In this paper, we comprehensively describe our FM-
Index construction approach and compare performance of these 
two indexes in terms of time for different string types in the 
Dataset. Our result shows that DivSufSort-based FM-Index 
performs 3.67% time efficient than SAIS-based FM-Index on 10 
out of 11 strings in the Dataset. 

Index Terms—String Matching, Suffix Array, Suffix Sorting, 
Burrows-Wheeler Transform, Wavelet Tree, FM-Index 

I. INTRODUCTION 
One of the most simple and handy data representations is 

strings, and for their efficient processing many algorithm exists 
in computer science. Suffix array is one such data structure 
used for string processing [1, 2]. It is a lexicographically sorted 
array of suffixes of a string. It is applied for pattern matching 
(counting or finding all the occurrences of a specific pattern) 
[1, 2], pattern discovery and mining (counting or finding 
generic, previously unknown, repeated patterns in data), 
information retrieval [3], genomic analysis (given genome’s 
suffix array, perform binary search to find suffix intervals that 
have P pattern as a prefix or align sequences or to find 
similarities) [5, 6, 9], and data compression [8, 9]. In all these 
applications, suffix array construction – a process also known 
as suffix sorting – is one of the main computational 
bottlenecks. 

For the last 15 years or so, research is focused on Suffix 
Array Construction Algorithms (SACAs) [11, 12, 13]. Most 
recent algorithms tend to use little memory as possible, or find 
a clever way to trade runtime, or by using compressed data 
structures [14], or by using disk, or some combination of these 
techniques. Another possible solution is to take advantage of 
multicore processors, GPUs, and clusters. Overall analysis 
time can be reduced when suffix array is constructed in 
parallel. Many sequential suffix array construction algorithms 
are developed but only few parallel algorithms can be found. 

Thus, the problem of practical and efficient techniques 
remains open.  

Suffix Array is used to compute Burrows-Wheeler 
Transform (BWT) of a string, where BWT is a reversible 
transformation of a string that allows the string to be easily 
and efficiently compressed [15]. The BWT was discovered 
independently of the suffix array, but it is now known that the 
two data structures are equivalent. For human genome, suffix 
array needs greater than 12 GB space. BWT reduces it by 
keeping the size of the index same as the string size, thereby 
needing only 3 GB space. Fig. 1 shows BWT string and Suffix 
Array for X = googol$ [16]. 

FM-index [8, 4] is a BWT-based compressed index 
proposed by Ferragina & Manzini.  It is used in many  
state-of-the-art software tools for mapping DNA short reads 
onto a known reference genome, for example, BWA [16],  
Bowtie2 [17], and SOAP3-DP. These aligners keep reference 
genome’s BWT in main memory and perform highly 
optimized operations on BWT indices to allow very fast 
mapping of individual short reads. In literature, numerous 
methods exist for efficient implementation of FM-Index. 
These methods are briefly reviewed in the next section. In this 
paper, we have implemented FM-Index using RRR wavelet 
trees and fast suffix sorting algorithms using DivSufSort [13] 
and SAIS [12]. 

Paper consists of following sections: Section 2 gives 
overview of Suffix Array (SA) and FM-Index methods. 
Section 3 describes brief overview of DivSufSort and SAIS. 
Section 4 describes the proposed approach used for FM-Index 
construction. Section 5 presents results and analysis of our 
experiments. Section concludes with discussion and future 
work. 

II. OVERVIEW OF SA AND FM-INDEX METHODS 
In literature, numerous space and time efficient methods are 

proposed for suffix sorting and FM-Index construction. 
Succinct full-text self-index takes less space and allows 
efficient searching for the occurrence of the pattern in text. 
Many such self-indexes have been designed, few of them are 
covered in this section. In [21], run-length FM-Index is 
presented, which takes less space than the text. In [22], Djamal 
introduces the use of relative FM-index that leads to significant 
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space savings in practice. In [19], Grabowski presents an 
alphabet independent and compressed FM-Index 
representation. It first compresses the text using Huffman code 
and then applies the Burrow-Wheeler transform on the 
compressed sequence. In [20], text is compressed using Kautz-
Zeckendorf coding and then applied the Burrow-Wheeler 
transform that gives better results than existing succinct data 
structures. 

Fast and efficient suffix sorting of big data is very useful in 
many applications. In [23], Larsson discusses the connection 
between suffix trees and context trees and how context trees 
can be used to represent BWT in a compressed and 
computationally efficient manner. In [24], Sadakane proposes 
another time-efficient computation of BWT based on a hybrid 
comparison-based sorting algorithm. Later, suffix tree based 
algorithms are improved [25, 26]. Heng Li [28] present a new 
method that is fastest for indexing short reads and long reads 
as well. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.  BWT and Suffix Array for X = googol$. [16] 

III. OVERVIEW OF SUFFIX ARRAY ALGORITHMS 

Let 0 1 1... NS s s s −= be a string of length N. Let 

1[ , ] ...i i jS i j s s s+= be substrings of S. Each is  is a member 

of finite alphabet∑  and size of alphabet is ∑ . String is ended 
by special character “$” known as sentinel. It is not the 
member of alphabet. Let 1 1[ , ] , ,... ,$i i i NSuf S i N s s s+ −= =  
denotes the suffix starting at i and running to $. The suffix 
array SA built on S is an array of length N storing sequence of 
indexes 0 1 1, ,..., Np p p −  such that

1 10
...

Np p pSuf Suf Suf
−

< < < , 

where lexicographical order is represented via “<” sign [29]. 
For a sample string “googol$”, Fig. 1 shows its suffix array as 
well as Burrows-Wheeler transform string [16].    

For time-efficient and space-efficient construction of suffix 
array, several suffix array construction algorithms (SACA) 
such as Ko-Aluru algorithm (KA) [27], DivSufSort [13], 
Induced Sorting algorithm (SAIS) [12], Bucket-Pointer 
Refinement algorithm (BPR), and MSufSort have been 
proposed. In this work, we consider two linear-time algorithms 

a) SAIS and b) DivSufSort for suffix array construction. In this 
section, we briefly discuss each of these techniques. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2.  SAIS Algorithm. [12] 

A. SAIS 
SAIS stands for Suffix Array Induced Sorting [12]. It 

constructs suffix array in linear time and is considered as 
benchmark in suffix sorting algorithms. It is implemented in 
the state-of-the-art BWA [16] sequence aligner. 

Fig. 2 shows SAIS algorithm. According to Mori [12], it is 
a recursive divide-and-conquer procedure that consists of two 
linear components: problem reduction and solution induction. 
In problem reduction: string is scanned first to classify each 
character is  as S- or L- type. A character is is S-type if 

1i is s +<  or 1 1i i is s and Suf+ +=  is S-type; and L-type if 

1i is s +>  or 1 1i i is s and suf+ +=  is L-type. These types 
are stored in n-bit Boolean array t where S-type is represented 
by 1 and L-type is represented by 0. A character is  is called 

LMS if is  is S-type and 1is −  is L-type. A suffix iSuf  is called 

LMS if is  is an LMS character. An LMS-substring is a 

substring [ , ]S i j  with both is  and js  LMS characters and 

there is no other LMS character in substring for i j≠ or 
sentinel. Array t is scanned to find all LMS-substrings that 
locates first occurrence of s-type and stores in P1 array. Then 
all LMS-substrings are induced sorted using array P1 and 
bucket B. Each LMS-substring is named by its bucket index to 
get a new shortened string. In solution induction: problem is 
solved by traversing recursively once to induce sort all L-type 
suffixes from the sorted LMS suffixes and traversed another 
time to induce sort all the type-S suffixes from the sorted L-
suffixes. 

Fig. 3 shows the running example of SAIS algorithm for 
string “mmiissiissiippii$” [12]. Line 3 shows type array t 
entries and at line 4 all the LMS-suffixes in S are marked by *. 
These are 2, 6, 10, and 16. Line 6 shows the five buckets for all 
the suffixes marked by their first character i.e. $, i, m, p, and s. 
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Line 7 shows suffix array SA with each bucket delimited by a 
pair of braces and content initialized by -1. Next indices of all 
LMS-Suffixes i.e. 2, 6, 10, and 16 are put into their respective 
buckets from end to head. Then all the L-type LMS-prefixes 
are induced sorted as follows. Line 11 shows the current head 
of each bucket marked by “^” symbol. SA is scanned from left 
to right to visit the index marked by “@” symbol. When 
visiting the “@” symbol index, previous index type is checked 
to know if it is L-type or not. If L-type than that index is 
appended in SA as shown in lines 12-28 and bucket head is 
respectively forwarded one step to the right. Next, all the LMS-
prefixes are induced sorted from stored L-type prefixes as 
follows. Each bucket’s end is marked and then SA is scanned 
from right to left. When visiting “@” symbol, previous index 
type is checked to know if it is S-type or not. If S-type than that 
is appended in SA as shown in lines 32-44 and bucket head is 
forwarded to the left. At the end, all LMS-prefixed are sorted 
in their order shown in line 44. 

 
Fig. 3.  SAIS Algorithm Example. [12]. 

B. DivSufSort 
DivSufSort [13] also constructs suffix array in linear time. 

It is an open source library developed by Yuta Mori. It is used 
for the forward BWT in ncomp (the engine for WinRK) and in 
early version of bcm. It is an improvement of Itoh-Tanaka’s 
two-stage (ITTS) algorithm [29], which is very fast and 

efficient suffix array method for both small and large texts. It 
comprises of four steps: In first step, type B* suffixes are 
selected. It is done by dividing suffixes into two types A and B 
such that a character is is type A if 1 1i iSuf Suf +>  and type B 

if 1 1i iSuf Suf +≤  where symbols 1 1,≤ >  denotes the 
lexicographic order between two strings. Next suffixes of type 
B whose subsequent suffix is a type A are selected. These 
suffixes are called type B*. In second step, type B* suffixes are 
sorted using substring sorting technique given in KA [27]. To 
reduce complexity in this step, it detects and induces tandem 
repeats using MSufSort. In step 3, sorted suffixes are scanned 
from right to left. For each suffix [ ]SA i , if previous suffix 
array index i.e. [ ] 1SA i −  is a type B suffix than current suffix 
is moved to the last empty position of its bucket. In final step, 
suffix array is completed by scanning sorted suffixes from left 
to right like Itoh-Tanaka algorithm or KA algorithm [27].  

IV. FM-INDEX METHODOLOGY 
Fig. 4 shows the block diagram of our FM-Index 

construction method. For a given string, first suffix array (SA) 
is constructed using DivSufSort and SAIS techniques. Next 
using SA, Burrows-Wheeler Transform (BWT) is computed. 
The combination of SA with BWT forms FM-Index, which 
enables backward search and self- indexing. Next, wavelet tree 
is used to encode BWT into balanced binary-tree of bit vectors. 
Finally, Wavelet tree nodes are stored as RRR sequences for 
fast binary rank queries and compression. Each of these blocks 
is discussed briefly as follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Block Diagram showing FM-Index Construction & Efficient Rank 
Query Implementation 

A. Suffix Array (SA) 
For string S, Suffix Array can be constructed as: 

1) Make an array of pointers to all suffixes iSuf   
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2) Use lexicographical order of suffixes to sort their 
respective pointers. 

Fig. 5 shows an example string $T ATGACGGATCA=  and 
its suffix array. We construct suffix array using two linear time 
algorithms: DivSufSort and SAIS in this paper. Each of these 
techniques is discussed in section 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Suffix Array for $T ATGACGGATCA=   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  SA and BWT for $T ATGACGGATCA=  

B. Burrows-Wheeler Transform (BWT) 
Given a string of length N, Burrows-Wheeler Transform 

(BWT) is computed from Suffix Array and the original string T 
as shown in Eq. 1. 

      
( ) ( )1 , 0

[ ]
$, ( ) 0

T S i S i
B i

S i

⎧ − ≠⎡ ⎤⎪ ⎣ ⎦= ⎨
=⎪⎩

                  (1) 

Fig. 6 shows BWT for string $T ATGACGGATCA= . 

C. Wavelet Tree (WT)  
Rank query on the string S is defined as ( ),rank i sym m= , 

where m represents occurrence of symbol sym in range [ ]1,S i  

e.g. ( )5, 2rank A =  for string $T ATGACGGATCA= . If 

0i ≤ then ( ), 0rank i sym = . 

  To answer rank queries, BWT is encoded using the 
wavelet tree as follows: 

1) Encode half the alphabet as 0, and other half as 1, 
for example: 

          { }
{ }

$, , , ,

( ) 0,0,0,1,1

A C G T

encode

∑ =

∑ =
                         (2) 

2) Represent every 0-coded symbols { }$, ,A C  as 

one sub-tree and 1-coded symbols { },G T  as other 
sub-tree. 

3) Encoding and branching is applied to each  
sub-tree until only one symbol remains. 

Fig. 7 shows the Wavelet Tree encoding for 
$T ATGACGGATCA= BWT. After tree construction, rank 

query on WT is performed using logυ  binary rank queries on 
the bit vectors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Wavelet Tree for BWT of string $T ATGACGGATCA=  

D. RRR Sequence 
Raman [10] purposed a method to encode bit sequence that 

answers the binary rank queries in O(1) time. Resultant 
sequence is known as RRR sequence. It also provides implicit 
compression. Given the wavelet tree, bit vectors corresponding 
to its node are encoded as RRR sequences.  

V. RESULTS & DISCUSSION 
We have implemented FM-Index in C++. For SAIS and 

DivSufSort, we have taken the code available at [12] and [13]. 
For Wavelet Tree and RRR sequence, libcds library is used. 
All the programs are compiled in gcc with following system 
specifications: 3.6 GHz Intel Core i3, 4GB RAM, and Ubuntu 
14 operating system.  
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To evaluate the performance of implemented index 
structure, dataset available at [7] is used. It consists of three 
categories: Artificial Strings, DNA Sequences, and Real World 
Strings. Table 1 shows the strings in our dataset. It can be seen 
that we have taken into account strings of varying size and 
alphabets. For each sample string, each index algorithm is 
executed 10 times and average execution time is measured. 

TABLE I.  DATASET 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

TABLE II.  AVERAGE EXECUTION TIME OF SUFFIX ARRAYS AND FM-
INDEX FOR DATASET STRINGS 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 shows the average execution time of both suffix 

arrays (DivSufSort & SAIS) and their corresponding  
FM-Indexes.  It can be seen that DivSufSort suffix array and its 
FM-Index takes less execution time for 10 out of 11 strings in 
dataset compared to SAIS suffix array and its FM-Index. The 
minimum execution time of 0.15 for DivSufSort, 0.18 for 
SAIS, 1.25 for DivSufSort-based FM-Index, and 1.29 for 
SAIS-based FM-Index is observed for “world” string while the 

maximum execution time of 6.12 for DivSufSort, 8.24 for 
SAIS, 49.26 for DivSufSort-based FM-Index, and 51.09 for 
SAIS-based FM-Index is observed for “gcc”. The reason 
DivSufSort & its FM-Index performed better than SAIS & its 
FM-Index is that DivSufSort is hybrid approach using  
Itoh-Tanaka’s two-stage (ITTS) algorithm for character 
representation and KA & MSufSort algorithms for suffix 
sorting while SAIS uses LMS substrings and induced sorting 
for suffix array construction. If induced sorting is optimized in 
terms of time or rigorous characterization and analysis is 
conducted as implemented in [18], it can outperform 
DivSufSort suffix array and correspondingly FM-Index. 

 
Fig. 8.  Performance Comparison of Suffix Arrays for Strings in 

Dataset 

 
Fig. 9.  Performance Comparison of FM-Indexes for Strings in Dataset 

The trend in terms of time efficiency of two suffix arrays 
with respect to different strings is shown in Fig. 8 while the 

Dataset 

Category Name Size Alphabets

Artificial Strings 

Fibonacci 20000000 2 

period_1000 20000000 26 

random 20000000 26 

DNA Sequence 

3Ecoli.dna 14776363 5 

4Chlamydophila.dna 4856123 6 

H_sapiens_Chr22.dna 34553758 5 

 
Real World  

Strings 

world 2473399 94 

jdk_50M 50000000 110 

howto 39422104 197 

jdk 69728898 113 

gcc 86630400 150 

Name DivSufSort
SA 

SAIS  
SA 

DivSufSort 
FMI 

SAIS  
FMI 

Fibonacci 2.72 1.29 6.48 5.01 

period_1000 1.09 1.38 7.78 8.04 

Random 2.07 2.81 10.02 10.79 

3Ecoli.dna 1.36 1.49 5.11 5.22 

4Chlamydophila.dna 0.41 0.44 1.64 1.67 

H_sapiens_Chr22.dna 3.01 3.72 11.92 12.63 

World 0.15 0.18 1.25 1.29 

jdk_50M 3.62 4.43 25.58 26.42 

Howto 3.10 4.26 22.86 24.13 

Jdk 5.32 6.06 35.98 36.59 

Gcc 6.12 8.24 49.26 51.09 
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trend in terms of time efficiency of two FM-Indexes with 
respect to different strings is shown in Fig. 9. It can be seen 
that DivSufSort Suffix Array performs 18.21% time efficient 
than SAIS Suffix Array while DivSufSort-based FM-Index 
performs 3.67% time efficient than SAIS-based FM-Index on 
10 out of 11 strings in the dataset. 

VI. CONCLUSION 
To find information & infer patterns in large texts and 

DNA sequences, FM-Index is used. We have implemented two 
FM-Index data structures using DivSufSort and SAIS suffix 
sorting algorithms. BWT of given string is encoded using RRR 
wavelet trees to solve rank queries efficiently in O(1) time. Our 
results show that DivSufSort-based FM-Index performs 3.67% 
better than SAIS-based FM-Index on 10 out of 11 strings in 
dataset. 
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